GRAPHIC ERA UNIVERSITY, DEHRADUN Second Semester 2016-2017 Model Course Handout

Course Code: THP 201

Course Title: Engineering Physics

Instructor -- in-charge: Dr. Kiran Sharma & Dr. Fateh Singh Gill

Course Description:

Engineering Physics is taught in B. Tech. I/II Sem (all branches). The objective of the subject is to make the student learn about the basic theories, postulates and principles of physics and correlate it with the technological applications and advancements. The main contents of the syllabus are:

- Study of the phenomenon like interference, diffraction and polarization of light. In Interference students learn about the interference based wavelength (monochromatic) determining methods as Fresnel biprism and Newton's ring experiments. Diffraction discusses the physics and resolving power of a grating whereas the polarization elaborates the production methods of plane circular and elliptical polarized lights and their applications.
- Laser and its technological applications as holography and fibre optics. The recording and reconstruction of a transmission hologram and the basic principles associated with a fiber optic and types of fiber are discussed.
- Fundamental principles, origin and development of Einstein's special theory of relativity, concept of frame of reference, time Dilation, Length Contraction, Variation of Mass and Mass-energy relation.
- Study of development of concepts of matter weaves (De-Broglie waves) and Schrodinger wave equations (TI and TD). Application of Schrodinger wave equations in the development of quantum physics: Problem of Particle confined in 1-D.
- Study of the Electromagnetic Waves (EM): Maxwell Equations and their application in the propagation of EM waves in free and conducting media. General discussion of Dia, Para, Ferro magnetic materials and their applications.
- Basic idea about Nano-Physics and fabrication techniques of nanoparticles, study of nanostructures as quantum well, wire and dot. The discussion on structure and application of carbon nano derivatives as.

Scope & Objective:

The branch of modern physics as quantum physics and nanoscience has opened the enormous possibilities of technological advancements. The phenomenal growth in the development and sophistication of these fields is shaping the future. Therefore, knowing about the science and possibilities of growing and emerging technologies, make the students ready to associate with some world class research institutes and present Engineering Physics course is helping considerably in this regard. The special theory of relativity and the foundations of quantum mechanics serve as the cornerstone for understanding the fabulous concepts of nature as wave particle duality of light, mass, space and time. Moreover, the Nanoscience deals with science, fabrication technology and study of nano-material as carbon based derivatives-carbon nanotubes (CNTs) and carbon nano fibres (CNFs). The present course aims at making the student learn about the basic theories, postulates and principles of modern physics as quantum physics and nanoscience and phenomenon of light waves like interference, diffraction, polarization. The emphasis is given on discussion of their applications and futuristic possibilities.

Text Book(s):

TB1 B. K. Pandey and S. Chaturvedi, "Engineering Physics", Cengage Learning, India, Ist Print 2012 TB2
H. K. Malik and A. K. Singh, "Engineering Physics", Tata Mc Graw Hill, New Delhi, ...2010 TB3 N.
Subrahmanyam Brijlal & M. N. Avadhanulu, "Text Book of Optics", S Chand, New Delhi24th Edition, 2012

Reference Books:

R1 Arthur Beiser, "Concepts of Modern Physics", Tata Mc Graw Hill, 6th Edition, 2003

R2 Ajoy Ghatak , "Optics", Tata Mc Graw Hill, 3rd Edition 4th reprint, 2006

R3 N. Zettili "Quantum Mechanics Concepts and Applications", Wiley, 2nd Edition, 2009

R4 David Jeffery Griffith, "Introduction to Electrodynamics", Pearson Edu. Inc., 2013

R5 Halliday, Resnick & Krane Booker, "Fundamentals of Physics", Wiley, 8th Edition, 2009

R6 Charles P. Poole, "Introduction to Nanotechnology", Wiley, Reprint 2009

R7 Robert Resnick , "Introduction to Special Theory of Relativity", Wiley, Reprint 2007

R8 Sears and Zemansky's, "University Physics with Modern Physics", Pearson, 12th Edition, 2009

Course Plan:

	Learning			
Lectur	Objectives	Topics to be covered	Reference Chap./Sec.	
e No.			(Book)	
1		Conditions of interference, Spatial	Chapter 14 (Pg 310-338)	
	Wave and particle nature	and temporal coherence	TB 3	
	of light and condition of	1		
	interference			
2-3	Determination of	Bi-prism experiment	Chapter 14 (Pg 310-338)	
	wavelength of		TB 3	
	monochromatic light			
	Interferenc			
4	e due to	Interference in wedge shaped film	Chapter 15 (Pg 339-384)	
	division of amplitude		TB 3	
5	Determination of	Newton's rings	Chapter 17 (Pg 394-424)	
	wavelength of		TB 3	
	monochromatic light			
-	Introductio			
6	n to	Introduction, Fresnel and	Chapter 18 (Pg 425-461)	
	diffraction a wave	Fraunhofer diffraction	TB 3	
	phenomenon of light			
7	Diffraction due to single	Fraunhofer diffraction at single slit	Chapter 18 (Pg 425-461)	
	slit		TB 3	
8-9	Diffraction due to N-slit	N-slits Fraunhofer diffraction and	Chapter 18 (Pg 425-461)	
		Diffraction Grating	TB 3	
10	Resolving power of	Rayleigh's criteria of resolution.	Chapter 19 (Pg 462-479)	
	grating	Resolving power	TB 3	
11	Introduction to			
11	laser	Spontaneous and Stimulated	Chapter 4 (Pg 4.1-4.13)	
		emission of radiation	TB 2	

12	Principle of laser	Population inversion and optical	Chapter 4 (Pg 4.1-4.13)
		pumping. Principle of laser action	TB 2
13	Working of Laser Ruby	Construction and working of Ruby	Chapter 4 (Pg 4.1-4.13)
	and He Ne	and He-Ne laser	TB 2
14	Application of laser in	Basic principle of holography,	Chapter 23 (Pg 615-622)
	3D imaging	construction and reconstruction of	TB 3
		image on hologram	
15		Numerical	
16	Introduction to fiber	Introduction to Fiber Optics, types	Chapter 5 (Pg .1-5.5)
15	optics	of fiber	TB 2
17	Dependence of optical	Acceptance angle and cone	Chapter 5 (Pg 5.1-5.5)
	fiber on parameters like	Numerical Aperture	TB 2
10	acceptance angle and NA		G1
18	Polarization of light and	Basic theory of double refraction,	Chapter 20 (Pg 480-536)
10.20	transverse nature of light	Ordinary and Extra-ordinary ray	TB 3
19-20	Production and analysis	Production and detection of plane,	Chapter 20 (Pg 480-536)
	of types of polarized	circularly and emptically polarized	TB 3
21	light	light,	Chapter 20 (Do 480 526)
21	Optical activity and	Optical Activity, Specific Rotation	Chapter 20 (Pg 480-536)
22	Introduction to special	and Polarimeters.	$\frac{1B 3}{(Ch 1 (Pa 1 30))}$
	theory of relativity	Calilaan transformation	(D1)
23	Exp and its negative	Michelson- Morley experiment	(K1)
23	results will help to	Whenerson- woney experiment	$(\mathbf{R}1)$
	understand the		(KI)
	foundation of theory of		
	relativity		
24	Postulates of theory of	Einstein's postulates of special	Ch 1 (Pg $1-30$)
2.	relativity	theory of relativity Lorentz	(R1)
	101401 (10)	transformation equations	(((())))
25	Concept of length	Length contraction, Time- dilation	Ch 1 (Pg 1-30)
	contraction and time		(R1)
	dilation		
26	Mass energy relation	Variation of mass with velocity and	Ch 1 (Pg 1-30)
		mass-energy relation.	(R1)
27	Mass energy relation	Mass-energy relation.	Ch 1 (Pg 1-30)
			(R1)
28		Quantum theory of radiation . Wave	Ch 22 (Pg 745-786)
	Describe the wave	particle duality (de-Broglie concept	TB 1
	particle duality of light	of matter waves).	

29	Wave particle duality	Wave packet, phase velocity and	Ch 22 (Pg 745-786)
		group velocity (without inter	TB 1
		relations),	
30	Uncertainty in position	Heisenberg's uncertainty	Ch 23 (Pg 797-798)
01	and velocity	principle	TB 1
51	Develop the mathematics	Schrödinger's wave equation in	Ch 22 (Pg 745-786)
	required to solve a one	three dimensions under a	ТВТ
	uimensional Schrödinger	conservative force field, wave	
	equation system	function and its significance,	

32	Define and demonstrate	Eigen values and Eigen functions	Ch 22 (Pg 745-786)
	real world examples of	for particle confined in one	TB 1
	potential barrier	dimensional infinite potential box	
33	Analyze electric fields	Displacement current , Three	Ch 17 (Pg 613-633)
	and magnetic fields for	electric vectors (E, P, D,),	TB 1
	simple arrangements of		
	changing electric and		
	magnetic fields		
	Faraday's Law and		
	Ampere's Law		
34-35	Concept of Magnetic	Magnetic vector (B, H, M)	Ch 17 (Pg 613-633)
	materials and their	permeability, susceptibility and	TB 1
	properties	their relation, Basic concept of	
26.27	Linify the lower of	Para, Dia, and Ferro magnetism	$C = 17 (D_{-} (12 (22)))$
30-37	Unity the laws of	Maxwell's equations in integral and	Cn 17 (Pg 613-633)
	magnetism and about		IB I
	EM wayas		
38	Linify the laws of	Concept of displacement current	Ch 17 (Pg 613-633)
50	electricity and	Maxwell's Fourth equations	TB 1
	magnetism and about	Waxwell's Fourth equations.	ID I
	EM wayon		
	Elvi waves		
39	Discuss the relationship	Electromagnetic wave propagation	Ch 17 (Pg 613-633)
	of Maxwell's Equations	in free space	TB 1
	to the phenomenon of		
	light and electromagnetic		
- 10	radiation.		
40	Concept of Nano Physics	Introduction to the field of Nano	Ch 19 (Pg 694-696)
		Physics, quantum wells wires and	TB 1
4.1		dots	
41	Application of nano	Carbon Nano Tubes & its	Ch 19 (Pg 700)
	materials	applications	TB 1

Total No. of Lectures: 41

Course Outcome:

- 1. An ability to strengthen the scientific basis of engineering and identify, formulate and solve engineering problems especially for emerging technological applications.
- 2. An ability to develop fundamentals while keeping in mind the evolving nature of subjects. A strong laboratory component allows exploring a range of experiments from classic ones to those that are more recent and advanced.
- 3. An ability to use the techniques, skills and modern engineering tools necessary for engineering practice in global, economic and social context.
- 4. Ability for understanding the basic knowledge of science, theories of Physics involving the various application oriented topics and improve the logical ability of thinking to solve problems required for all engineering branches.
- 5. An understanding through laboratory and experimental activities will help to solve problems related to key concepts taught in the classroom and accomplish a common goal.
- 6. Acquired knowledge will help the students in pursuing higher studies and expand professional careers in the field of Nano Science, and engineering technology. Current science and technological practice in industry and advanced research topics in the area.

Evaluation Scheme:

EC No.	Component	Duration	Marks	Weightage (%)	Date & Time	Nature
1.	Mid Term Test	2 hrs	60	30		
2.	End Term Exam	3 hrs	100	60		
3.	Assignments		50	5	See Note 1	
4.	Class test/participation		10	5	See Note 2	

Note 1: Total five assignments will be given in the entire semester (10 marks each) which will contain numerical as well as theory questions.

(i)	Assignment 1	Interference
(ii)	Assignment 2	Diffraction, Laser, Fiber Optics
(iii)	Assignment 3	Polarization, Special Theory of Relativity
(iv)	Assignment 4	Wave Mechanics
(v)	Assignment 5	Electromagnetism, Nano Physics

Note 2: Two class tests will be conducted in this semester; the date will be announced subsequently in the respective classes. Out these the best performance in any one test will be considered.

Chamber Consultation Hours: Dr. Kiran Sharma: Wednesday 4-5pm and Thursday 4-5pm

Dr. Fateh Singh Gill: Monday 9-10 am and Tuesday 9-10 am

Notices: All notices concerning this course will be displayed on the Physics Department Notice Board and will also be available in the B. Tech Ist year web-site. <u>www.btechgeu.in</u>